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Stochasticity in individual measures
Measures between experiments may suffer from technical bias
How to maximise signals coming from multiple sources

-> can we address this with data integration

» Leverage measures that are similar across modalities
 Remove noise
 Biologically interpretable
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= observed measures
= inferred latent variables
= feature weights

Matrix factorization :

Argelaguet et al. (2018), Molecular Systems Biology
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e 2 models:
2020 train, 2021 test
e 2020+21 train / test

* Lasso regression

* Prediction features:
* Baseline values
 Demographic information
* Top MOFA features
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* Models predicted CCL3 expression and 1gG PT fold change well

 MOFA factors improved predictions by small margins

* MOFA model could still be improved:
* Signals dominated by gene expression modality
* Too many factors
* Newer implementation takes groupings (including time courses) into account

* Very similar results when training 2020 and 2020+2021

https://github.com/nixstix/CMI-PB2
https://github.com/topics/2nd-cmipb-challenge



https://github.com/nixstix/CMI-PB2
https://github.com/topics/2nd-cmipb-challenge
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- baseline assay data (ab, cytokine, cell freq, gene expr) = mmmm

- MOFA factors:
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Train data:
MOFA variances

Test data: Train data:
Baseline data MOFA weights

Test data




LASSO regression in R

library(glmnet)

model<-cv.glmnet(x=as.matrix(predictors.rmNA),
lambda = NULL,

task, family='gaussian',
alpha=alpha,
nfolds=nrow(predictors.rmNA) ,
type.measure="mse")

Cross-validation using leave-one-out
Hyperparameter tuning of lambda parameter
Additional tuning of alpha parameter (lasso -> elastic -> ridge)



