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Despite high vaccine coverage, reported cases of pertussis

have increased steadily over the last twenty years. This

resurgence has stimulated interest in host responses to

pertussis infection and vaccination with the goal of developing

more effective next-generation vaccines and vaccination

strategies. Optimal protection against Bordetella pertussis

appears to be multifactorial requiring both humoral and cellular

responses. Natural infection and whole-cell pertussis

vaccination induce Th1 and Th17-dominated responses. In

contrast, acellular vaccines induce Th2-dominated responses.

Available immunological data indicate that while antibodies

provide protection against disease, Th1 and Th17-mediated

immune responses are required for bacterial clearance and

long-lasting protection. The nature of the priming in children

appears to be important in modulating bias and durability of

immune responses required to provide protection against B.

pertussis. This review summarizes the current understanding of

differences in immune responses and their role in protection

against B. pertussis following infection or vaccination.
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Introduction
Pertussis is an acute respiratory disease caused by the

bacterium Bordetella pertussis. The disease is character-

ized by violent coughing fits associated with an inspira-

tory whoop and post-tussive vomiting [1,2]. Because the

first routine pertussis vaccination occurs at six to eight

weeks of age, infants under two months of age are the

most vulnerable and have the highest rate of serious

clinical complications requiring hospitalization and the

highest mortality rate [3,4]. Disease in very young infants

is characterized by gagging, gasping, bradycardia, cyano-

sis, and vomiting [5]. Apneic episodes following paroxys-

mal fits are common [5]. Severe and fatal pertussis in
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young infants is associated with extreme leukocytosis,

pulmonary hypertension, and pneumonia [5,6].

In the pre-vaccine era there were an average of 162 000

cases of pertussis per year (151 cases/100 000) in the United

States with an average case fatality rate of 4% (1926 and

1929 Annual Reports of the Surgeon General of the Public

Health Service of theUnitedStates). Introductionof killed,

whole-cell pertussis (wP) vaccines combined with diphthe-

ria and tetanus antigens (DTwP) in the 1940s led to a rapid

decline in the incidence of reported pertussis resulting in a

historic low of only 1010 cases in 1976 [7]. However, the wP

vaccine was commonly associated with mild injection site

pain and swelling, low-grade fever and fretfulness and less

commonly with more severe reactions: convulsions and

hypotonic–hyporesponsive episodes [8–11]. This reacto-

genicity led to reduced acceptance of the wP vaccine and

declining vaccination rates in most industrialized countries

[12]. In response to these concerns, less reactogenic acel-

lular pertussis (aP) vaccines were developed consisting of

purified B. pertussis antigens combined with aluminum

adjuvant. Clinical trials confirmed aP vaccines were less

reactogenic than the wP vaccines they replaced and dem-

onstrated comparable efficacy over the first five years

following vaccination [11,13–16]. High-income countries

began replacing combined DTwP vaccines with combina-

tion DTaP vaccines in the 1990s. Under the currently

recommended vaccination schedule in the United States,

children receive the DTaP vaccine at two, four and six

months ofageandbooster dosesat15–18monthsofage, 4–6

years of age and Tdap at 11–12 years of age [17]. Approxi-

mately 95% of children receive at least three doses of

vaccine by school entry and greater than 80% of children

receive the adolescent booster dose by middle school

enrollment [18,19]. Despite these high rates of vaccination,

the United States has experienced a steady increase in

reported cases of pertussis since 2000 (CDC, Pertussis

Surveillance and Reporting website; URL: http://www.

cdc.gov/pertussis/surv-reporting.html). Several hypothe-

ses have been proposed to explain this resurgence includ-

ing more rapid waning of protective immunity following aP

vaccination, evolution of B. pertussis to escape protective

vaccine-mediated immunity, and increased carriage and

asymptomatic transmission from individuals vaccinated

with the aP vaccines [20�,21��]. In this review, we summa-

rize the current understanding of the host immune

response to pertussis infection and vaccination.

Immune correlates and protection
Over one hundred years after Bordet and Gengou identified

B. pertussis as the causative agent of whooping cough, we still

lack a complete understanding of how the bacterium causes
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disease or the mechanisms by which host immunity to

infection or vaccination confers protection. Studies con-

ducted during the whole-cell vaccine era had shown a

correlation between measurable agglutinin titers in serum

with protection against pertussis [22–24]. However, large

field clinical studies that demonstrated efficacy of the aP

vaccines, failed to demonstrate correlation between protec-

tion and antibody titers for any of the vaccine antigens [25].

Evidence for antibody-mediated protection was subse-

quently provided in household contact studies in which

pre-exposure antibody levels were evaluated for cases of

pertussis that occurred in two of the large efficacy trials

[26�,27�]. In these household contact studies, lower attack

rates were observed in children with high pre-exposure

levels of anti-pertactin (PRN) antibodies, anti-fimbriae

(FIM) antibodies, and to a lesser extent anti-pertussis toxin

(PT) antibodies. The lowest attack rates were seen in

children with quantifiable antibodies against both pertactin

and fimbriae, independent of the presence or absence of

anti-PT antibodies.Therewasno observable contribution of

anti-filamentous hemeagglutinin (FHA) levels to protection

[28,29]. Evidence that antibodies alone can confer protec-

tion from disease was provided by mouse studies in which

high titer anti-pertussis human immunoglobulin and mouse

anti-PT monoclonal antibodies protected mice from pertus-

sis challenge even when given seven days after challenge

[30��,31�]. Additional evidence includes recent studies dem-

onstrating that vaccination of pregnant baboons with aP

vaccine or mono-component PT vaccine protected newborn

baboons from challenge and retrospective studies demon-

strating protection in newborn children born to mothers that

received Tdap in pregnancy [32–34,35�,36,37,38��]. The

protection documented in these studies is reasonably

assumed to be due to the trans-placental transfer of anti-

bodies from mothers to their infants. The lack of a strong

correlation between serum antibody titers and protection in

the vaccine efficacy studies suggests that cell-mediated

immunity and/or mucosal immunity plays an important role

in establishing protective immunity (Figure 1).

Natural immunity
The complex etiology of B. pertussis is attributed to

expression of multiple virulence factors that contribute

directly to pathogenesis or have immunomodulatory

effects. The interface between innate and adaptive

immune responses is key to the recognition of B. pertussis
and the control of the infection by the host response. The

recognition of bacterial antigens by receptors on mucosal

epithelial cells and innate immune cells such as macro-

phages and dendritic cells leads to activation of a cascade

of immune responses including both pro-inflammatory

(IL6, IL1b, TNFa, IL8, IL12, IL23, and IFN type 1) and

anti-inflammatory (IL10) responses [39–44]. B cells and

CD4 T cells were identified as the main effector cells in

providing protection against B. pertussis infections [45,46].

It was further demonstrated that in addition to their role

in antibody production, CD4 T cells provide protection
www.sciencedirect.com 
against B. pertussis through an antibody independent

mechanism [45]. Initial investigations of cytokine pro-

duction by peripheral blood T cells from children recov-

ering from whooping cough indicated that immunity

generated by natural infection is mediated by IFNg
producing T cells [47]. Evidence of the relevance of

these cells is provided by the observation that memory

CD4 T cells clones generated from PBMCs of previously

infected adults secrete IFNg, induce anti-microbial activ-

ity in phagocytic cells and provide help to opsonizing B

cells [48��]. The direct role of CD4 T cells in bacterial

clearance was demonstrated by adoptive transfer from

wild-type mice into immunocompromised mice [49��].
Taken together, these results suggest CD4 T cells con-

tribute to protection from B. pertussis colonization through

IFNg-dependent mechanisms. Recent advances in the

evaluation of Th17 responses have extended our under-

standing of the cellular immune response to pertussis

infection. The production of the Th17-promoting cyto-

kine IL23 by B. pertussis-infected human dendritic cells

suggested a role for Th17 cells in anti-pertussis immunity

[50��]. The detection of IL17 production in murine and

baboon airways following B. pertussis infection and the

inability of IL17A receptor knock out mice to clear B.
pertussis infection demonstrated the importance of the

Th17 response to protection following B. pertussis infec-

tion [51��,52�]. Further evidence of the relevance of Th1

and Th17 responses against B. pertussis infection and

colonization was provided by the baboon model

[53,54]. Following infection with B. pertussis, baboons

exhibited strong Th1 and Th17 responses, that resulted

in protection from clinical signs of disease and sterilizing

immunity [21��,52�].

In addition to the proposed role of B. pertussis-specific
IFNg and/or IL17 responses in clearance of bacteria from

the airway, the induction of IFNg and/or IL17 producing

tissue resident memory T cells observed in mouse lungs

following infection has been shown to play a significant

role in providing long-term memory following B. pertussis
infection in the mouse model [55��].

Vaccine-mediated immunity
The temporal association of the switch from wP to aP

vaccines with the resurgence of pertussis, combined with

our expanding understanding of differences in aP and wP-

induced immunity, is consistent with the hypothesis that

the observed resurgence is the result of the switch from

wP to aP vaccines. Comparative studies demonstrated

that both wP and aP vaccines induce strong IgG responses

against pertussis antigens. aP vaccines, which are formu-

lated with a single adjuvant and a limited set of antigens,

stimulate a different and more restricted immune

response profile compared to wP vaccines or natural

infection. Both wP vaccines and infection present a broad

array of antigens and potential adjuvants. Infection also

presents the signals associated with the replication of
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Figure 1
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bacterial cells and host damage at the mucosal surface.

Infants primed with aP or wP vaccines exhibit differences

in the polarization of the immune response between Th1,

Th2 and Th17 as shown by the B. pertussis-specific IgG

subclass distribution observed at 4–10 years of age

[56��,57��]. In children primed with wP vaccines IgG4

levels remained low despite receiving a DTaP booster at

4 and 9 years of age [56��,57��]. Increased levels of the

IgG4 subclass are associated with a Th2-skewed immune

response, which may influence the protection against

pertussis in vaccinated children [58]. A recent study

comparing the immune response between wP and aP

primed individuals revealed that CD4 T cells from wP

primed individuals produced high levels of PT-specific

IFNg and IL17, but no IL4, whereas CD4 T cells from aP

primed individuals expressed high levels of IL4, but no

IFNg or IL17. CD4 T cells from wP primed individuals

remained committed to their original skewing following

boosting with aP vaccine, continuing to produce high

levels of IFNg and IL17, but no IL4 [59��]. Moreover,

wP primed individuals exhibited greater expansion of

pertussis-specific CD4 T effector memory and T central

memory responses, and IgG and IgG1 responses, than aP

primed individuals after an aP boost [59��]. Taken

together these studies illustrate the importance of the

priming vaccine in programing the immune response.

The clinical significance of the priming vaccine was

demonstrated by the observation that among 11–12-

year-old children born during the transition from wP

vaccine to aP vaccine in Queensland Australia, those

who received only aP vaccine had the highest rates of

pertussis, while those who received only wP vaccine had

the lowest incidence. Of those individuals that received a

mixed course of vaccination, those that received a first

dose of aP followed by wP had high incidence of disease

while those that had an initial dose of wP followed by aP

had low incidence of disease [60].

The relative contribution of Th1, Th2 and Th17 cellular

responses to vaccine-mediated protection differs to some

degree depending on species. In mice, aP vaccination

induces CD4+ T cells to produce IL4, IL5, IL17, and to

lesser extent IFNg, consistent with the induction of a

Th2/Th17 response [51��,61��]. In contrast, wP vaccines

induce IFNg and IL17A in mice consistent with the

induction of a Th1/Th17 response [51��]. Although IL4

and IFNg expression is induced by aP vaccine in mice,

aP-mediated protection was comparable in IL4�/�,
IFNg�/� and wild-type mice. In contrast, aP-mediated

protection was significantly reduced in IL17A�/� mice

indicating a required role for Th17 responses in vaccine-

induced protection [51��]. Protection against infection

following wP vaccination was greatly diminished in

IFNg�/� mice with significantly higher bacterial burden

in the lungs that failed to clear. Bacterial burdens in wP-

vaccinated IL17A�/� mice are somewhat higher early

after infection but the infection cleared as rapidly as in
www.sciencedirect.com 
wild-type mice. These results indicate that Th1

responses are required for the protection induced with

wP vaccines in mice [51��,62].

In the baboon model, vaccination with wP vaccines

induced strong Th1 and Th17 responses but no Th2

response. Baboons vaccinated with wP vaccine were

protected from disease and rapidly cleared infection

[21��,63]. In contrast, vaccination with aP vaccines

resulted in strong Th2 responses, low Th1 responses

and no Th17 responses [21��,63]. Immunization with

aP vaccines conferred protection against disease but

failed to prevent colonization, carriage or transmission

to co-housed animals [21��,63]. Taken together, these

results indicate that Th2 responses are sufficient to pro-

tect against disease and Th1 and/or Th17 cells are

required for the prevention of B. pertussis colonization

in the baboon model.

Analysis of cellular responses in blood samples from

children following immunization with wP vaccine or

following infection revealed moderate to high levels of

IFNg, but undetectable IL5. In contrast, blood samples

from children following immunization with aP vaccine

demonstrated high levels of IL5 and low levels of IFNg
[64–67]. These results indicate that aP vaccination

induces strong Th2 responses and weak Th1 responses

in humans while wP vaccines induce strong Th1

responses. These results mirror those observed in the

baboon model. Direct evidence of induction of Th17

responses following the priming series of vaccination in

children is lacking. However, a recent study demon-

strated high levels of IFNg and IL17 but no IL4 following

aP boosting of wP-primed children [59��]. In contrast,

only IL4 was induced following aP boosting of aP-primed

children [59��].

Immune memory
Although markers that correlate with duration of immu-

nity following vaccination have not been identified and

are difficult to validate, an important determinant of long-

term immunity may be the induction of tissue resident

memory (Trm) cells [68]. It was recently shown that B.
pertussis infection establishes CD4+ Trm cells in lungs of

infected animals [55��]. These cells expanded rapidly in

the lung tissue upon re-infection and provided a protec-

tive response [55��]. The importance of Trm cells in

protection upon reinfection was demonstrated by block-

ing the influx of lymphocytes upon reinfection and

through adoptive transfer studies [55��]. Additionally,

an experimental acellular pertussis vaccine adjuvanted

to stimulate Th1 and Th17 responses induced B. pertussis-
specific Trm cells in the lungs of vaccinated mice and

conferred protection against infection that persisted for

ten months [69��]. The protection observed in this study

correlated with the number of IL17-secreting Trm cells

in nasal tissue.
Current Opinion in Immunology 2019, 59:72–78
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Conclusion
The observed rates of pertussis in high-income countries

despite high rates of vaccination highlight the need for

new vaccines or vaccine strategies to achieve complete

control of this disease. The available evidence suggests

that Th2 responses are likely sufficient to protect against

disease. However, Th1 responses and/or Th17 responses

targeting the bacterial cell at the mucosal surface are

required to mediate clearance of bacteria from the airway

and prevent asymptomatic carriage. Studies in the mouse

and baboon models have shown that infection induces

strong immune responses that prevent disease and result

in sterilizing immunity. Killed whole-cell vaccines stim-

ulate an immune profile similar to infection and protect

against disease and colonization. Although wP vaccines

do not induce sterilizing immunity, wP-vaccinated

baboons were colonized at significantly reduced levels

and cleared infection quickly. Although aP vaccines pro-

tect against disease, they fail to prevent carriage in and

transmission from vaccinated baboons. If this observation

is relevant in people, it is reasonable to hypothesize that

increased asymptomatic carriage would be observed in an

aP-vaccinated population leading to increased pertussis

exposure in that population. Data indicate that the dura-

tion of immunity induced by aP vaccines is shorter than

that induced by wP vaccines, and priming by aP vaccines

in infants appears to lead to diminished duration of

immunity following subsequent boosting in adolescence

[70]. Despite these shortcomings, it is important to rec-

ognize that aP vaccines were developed in response to a

significant need as acceptance of wP vaccination fell in

high-income countries. The licensed aP vaccines have an

excellent safety profile and protect vaccinated individuals

from disease. With the implementation of maternal vac-

cination to protect newborns in their first months of life

and vaccination of infants and toddlers, we can prevent

severe disease in young children using the existing vac-

cines [71]. A comparison of pertussis rates in high-income

countries today with rates in the pre-vaccine era demon-

strates that we are maintaining significant levels of control

of pertussis. However, pertussis remains the most com-

mon vaccine-preventable disease. Next-generation vac-

cines are needed that combine the safety profile and

protection against disease inherent in the aP vaccines

with protection against colonization and enhanced dura-

tion of immunity. A number of new approaches are being

taken toward this goal. These include the development of

improved aP vaccines that incorporate alternative adju-

vants and antigens to induce more durable immunity and

target the bacterial cell for clearance, aP vaccines based

on outer membrane vesicles, live-attenuated pertussis

vaccine and killed whole-cell vaccines using genetically

engineered strains designed to be less reactogenic [72]. As

we work toward the goal of introducing next-generation

pertussis vaccines, it is important to recognize that our

understanding of the host-response to pertussis infection

and vaccination is incomplete. Continued efforts using
Current Opinion in Immunology 2019, 59:72–78 
powerful tools available in the mouse model and proof of

concept studies with novel vaccines in the baboon model

are needed to understand the mechanisms underlying

vaccine-mediated protection against pertussis.
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