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Thanks for Organizing the Challenge!



General Thoughts on the Challenge

- Key Challenges
- Large-P-Small-N Problem
- Seven different prediction tasks
- Six different data modalities
- Cohort-specific “batch” effects

- Key Periorities
- Solid QC and data preprocessing of the experimental data
- Solid Model evaluation framework, because it is easy to overfit on
the training data in the Large-P-Small-N setting
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- Key Results

Very difficult to beat the baseline!
| cannot read
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Models

~0.57-0.57,

?

“We expect contestants to generate computational models,
and upon making predictions, these values are ranked from
highest to lowest (i.e. highest = 1, lowest = N)”



QC & Preprocessing - Removing Measurements

Manually subset features for certain assays:
- PBMC frequencies: Selected a subset of cell types based on the gating info
- Olink: Only use proteins with NA fraction below 50%.
- Olink QC Qarning:
- -> Removed measurements with QC warning
- Different Units in Assay
- Plasma Antibody Titers:
- Inthe 2020 dataset we have "IU/ML" whereas for 2021-2023 we have MFI (fluorescence intensity).
- 'IU/ML’ is obtained using a serum standard, thus there is not trivial conversion from MFI to IU/ML.
- ->Removed the 2020 Ab titer data
- Olink:
- In the 2020 dataset we have "Normalized Protein eXpression’, whereas for 2021-2023 we have "PG/ML’
- ->Removed all measurements with different units.
- Lower Limit of Detection in Plasma Antibody Titers:
- ->Removed specimen with more than 50% of measurements below LOD
- Lower Limit of Quantification in Olink assay
- ->Removed specimen with more than 50% of measurements below LOD
- Outlier Removal in Legendplex Assay
- ->Removed 8 samples based on PCA plots



QC & Preprocessing - Normalization

pbmc_cell_frequency:
- Median Baseline Normalization (i.e. divide each feature by the median of that feature in the measurement

from specimen from day 0)

- pbmc_gene_expression:
- VST (from DESeq2)

- plasma_ab titer:
- Median Baseline Normalization

- plasma_cytokine_concentration_by legendplex:
- Median Baseline Normalization

- plasma_cytokine_concentration_by olink:
- No Normalization

- t_cell_activation:
- No Normalization

-t _cell_polarization:

- No Normalization



QC & Preprocessing - Integration / Batch Removal

pbmc_cell_frequency:

- No Integration

- pbmc_gene_expression:
- ComBat-seq

- plasma_ab titer:
- No Integration

- plasma_cytokine_concentration_by legendplex:
- ComBat

- Plasma_cytokine_concentration_by_olink:
- No Integration

- t_cell_activation:
- No Integration

- t_cell_polarization:

- No Integration



Model Evaluation Framework - Nested CV Setup
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Model Evaluation Framework

- To evaluate and select models for each task, | used nested cross validation (CV):
- Folds in the outer loop:
- Each cohort is a fold (i.e. Group k-fold)
- QOuter loop is used to estimate cross-cohort model performance
- Fold in the inner loop:
- Each subject is a fold (i.e. LOOCV)
- Innerloop is used to select the best set of hyperparameters for any model.
- Using this set of hyperparameters | then estimate model performance on the
hold-out fold from the outer loop
- |l used this model evaluation framework to test all combinations of models and features:
- Models:
- LASSO, Elastic Net, Random Forest
- Features:
- Power set of all assays (+/- PCA per assay)
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Choosing the Final Model + Data for Task

- Top ranking performance
- Low variance between the test sets

- If several models with top performance and low variance, choose the more regularized
model

- If several models with top performance and low variance, choose model that is not
using any assay that is missing often in test data (specifically Olink!)



Choosing the Final Model + Data for Task

- Other notes:
- | tested Boruta Algorithm for feature selection but results were not convincing (and
it costs quite some compute)
- | wanted to test multi-omics integration methods, such as MOFA+, but didn’t have
the time to do so...



Thank you for you attention! Questions?



Appendix



Issues with the 2020 Cohort

- Many assays are missing, so | actually ended up not using the 2020 Cohort for most
prediction tasks
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Batch Effects after Normalization

- Strong batch effect for PBMC Gene Expression
- Small batch effect for Lengendplex (driven by outliers?)
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What mismatch do we allow for when generating target
tracks?
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Differences in the Marginal Distributions of the Targets
between Cohorts

Ab Titer Tasks (1.1 and 1.2), raw data
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