CMI-PB Third Challenge Debrief Session

14.03.2025 Philipp Sven Lars Schäfer

https://psl-schaefer.github.io/cmi_pb_third_challenge/

Thanks for Organizing the Challenge!

General Thoughts on the Challenge

- Key Challenges
 - Large-P-Small-N Problem
 - Seven different prediction tasks
 - Six different data modalities
 - Cohort-specific "batch" effects
- Key Priorities

-

- Solid QC and data preprocessing of the experimental data
- Solid Model evaluation framework, because it is easy to overfit on the training data in the Large-P-Small-N setting

General Thoughts on the Challenge

- Key Results
 - Very difficult to beat the baseline!
 - I cannot read

"We expect contestants to generate computational models, and upon making predictions, these values are ranked from highest to lowest (i.e. highest = 1, lowest = N)"

QC & Preprocessing - Removing Measurements

- Manually subset features for certain assays:
 - PBMC frequencies: Selected a subset of cell types based on the gating info
 - Olink: Only use proteins with NA fraction below 50%.
- Olink QC Qarning:
 - -> Removed measurements with QC warning
- Different Units in Assay
 - Plasma Antibody Titers:
 - In the 2020 dataset we have `IU/ML` whereas for 2021-2023 we have MFI (fluorescence intensity).
 - `IU/ML` is obtained using a serum standard, thus there is not trivial conversion from MFI to IU/ML.
 - -> Removed the 2020 Ab titer data
 - Olink:
 - In the 2020 dataset we have `Normalized Protein eXpression`, whereas for 2021-2023 we have `PG/ML`
 - -> Removed all measurements with different units.
- Lower Limit of Detection in Plasma Antibody Titers:
 - -> Removed specimen with more than 50% of measurements below LOD
- Lower Limit of Quantification in Olink assay
 - -> Removed specimen with more than 50% of measurements below LOD
- Outlier Removal in Legendplex Assay
 - -> Removed 8 samples based on PCA plots

QC & Preprocessing - Normalization

- pbmc_cell_frequency:
 - Median Baseline Normalization (i.e. divide each feature by the median of that feature in the measurement from specimen from day 0)
- pbmc_gene_expression:
 - VST (from DESeq2)
- plasma_ab_titer:
 - Median Baseline Normalization
- plasma_cytokine_concentration_by_legendplex:
 - Median Baseline Normalization
- plasma_cytokine_concentration_by_olink:
 - No Normalization
- t_cell_activation:
 - No Normalization
- t_cell_polarization:
 - No Normalization

QC & Preprocessing - Integration / Batch Removal

- pbmc_cell_frequency:
 - No Integration
- pbmc_gene_expression:
 - ComBat-seq
- plasma_ab_titer:
 - No Integration
- plasma_cytokine_concentration_by_legendplex:
 - ComBat
- Plasma_cytokine_concentration_by_olink:
 - No Integration
- t_cell_activation:
 - No Integration
- t_cell_polarization:
 - No Integration

Model Evaluation Framework - Nested CV Setup

Model Evaluation Framework

- To evaluate and select models for each task, I used nested cross validation (CV):
- Folds in the outer loop:
 - Each cohort is a fold (i.e. Group k-fold)
 - Outer loop is used to estimate cross-cohort model performance
- Fold in the inner loop:
 - Each subject is a fold (i.e. LOOCV)
 - Inner loop is used to select the best set of hyperparameters for any model.
 - Using this set of hyperparameters I then estimate model performance on the hold-out fold from the outer loop
- I used this model evaluation framework to test all combinations of models and features:
 - Models:
 - LASSO, Elastic Net, Random Forest
 - Features:
 - Power set of all assays (+/- PCA per assay)

Model Evaluation Framework

A	В	с	D	E	F	G	н		L	к
task	_model	🔻 srho_mean	srho_sd	srho_min 🔽	2021_dataset	2022_dataset	2020_dataset	dim_red 🔽	n_modalities	feature_set
task_21	rf	0,793	3 0,064	4 0,748	0,838	0,748	N 9930 - 19	рса	5	pbmc_cell_frequency_pca+plasma_cytokine_concentration_by_legendplex_pca+t_cell_activation_pca+n
task_21	elnet	0,79	9 0,039	9 0,763	0,817	0,763		none	5	pbmc_cell_frequency+plasma_cytokine_concentration_by_legendplex+t_cell_activation+metadata+base
task_21	rf	0,775	5 0,015	5 0,764	0,785	0,764		рса	6	pbmc_cell_frequency_pca+plasma_cytokine_concentration_by_legendplex_pca+t_cell_activation_pca+t
task_21	elnet	0,766	5 0,08	3 0,71	0,823	0,71		рса	6	pbmc_cell_frequency_pca+plasma_cytokine_concentration_by_legendplex_pca+t_cell_activation_pca+t
task_21	lasso	0,763	3 0,06	5 0,721	0,806	0,721		none	5	pbmc_cell_frequency+plasma_cytokine_concentration_by_legendplex+t_cell_activation+metadata+base
task_21	lasso	0,759	9 0,15	5 0,59	0,876	0,59	0,811	pca	4	<pre>pbmc_cell_frequency_pca+pbmc_gene_expression_pca+metadata+baseline</pre>
task_21	elnet	0,755	5 0,161	L 0,571	0,87	0,571	0,825	none	4	pbmc_cell_frequency+plasma_cytokine_concentration_by_legendplex+metadata+baseline
task_21		0,755	5 0,162	0,64	0,87	0,64		none	5	pbmc_cell_frequency+plasma_cytokine_concentration_by_legendplex+t_cell_activation+metadata+base
task_21	elnet	0,754	4 0,192	2 0,544	0,801	0,544	0,918	pca	4	pbmc_gene_expression_pca+t_cell_activation_pca+metadata+baseline
task_21	elnet	0,753	3 0,055	5 0,715	0,792	0,715		рса	6	<pre>pbmc_cell_frequency_pca+plasma_cytokine_concentration_by_legendplex_pca+plasma_cytokine_conce</pre>
task_21	lasso	0,753	1 0,195	5 0,531	0,821	0,531	0,9	рса	3	pbmc_gene_expression_pca+metadata+baseline
task_21	lasso	0,753	1 0,195	5 0,531	0,821	0,531	0,9	pca	4	pbmc_gene_expression_pca+plasma_cytokine_concentration_by_legendplex_pca+metadata+baseline
task_21	lasso	0,751	1 0,195	5 0,531	0,821	0,531	0,9	рса	4	pbmc_gene_expression_pca+t_cell_activation_pca+metadata+baseline
task_21	lasso	0,748	в 0,02	2 0,735	0,762	0,735		рса	7	pbmc_cell_frequency_pca+plasma_cytokine_concentration_by_legendplex_pca+plasma_cytokine_conce
task_21	baseline	0,746	6 0,172	2 0,552	0,876	0,552	0,811	none	1	baseline

Choosing the Final Model + Data for Task

- Top ranking performance
- Low variance between the test sets
- If several models with top performance and low variance, choose the more regularized model
- If several models with top performance and low variance, choose model that is not using any assay that is missing often in test data (specifically Olink!)

Choosing the Final Model + Data for Task

- Other notes:
 - I tested Boruta Algorithm for feature selection but results were not convincing (and it costs quite some compute)
 - I wanted to test multi-omics integration methods, such as MOFA+, but didn't have the time to do so...

Thank you for you attention! Questions?

Appendix

Issues with the 2020 Cohort

- Many assays are missing, so I actually ended up not using the 2020 Cohort for most prediction tasks

Batch Effects after Normalization

- Strong batch effect for PBMC Gene Expression
- Small batch effect for Lengendplex (driven by outliers?)

What mismatch do we allow for when generating target tracks?

Differences in the Marginal Distributions of the Targets between Cohorts

- Ab Titer Tasks (1.1 and 1.2), raw data

