CMI-PB Prediction Challenge

PB

1st Informational Session

Oct 6th, 2023

La Jolla Institute for Immunology

Examples of prediction challenges

Benefits:

The Netflix Prize: How a \$1 Million Contest Changed Binge-Watching Forever

Quantitative and unbiased evaluation of model performance Drives participants to strive for accuracy and outperform their other participants Encourages a wide range of participants to join

Contributes to a deeper

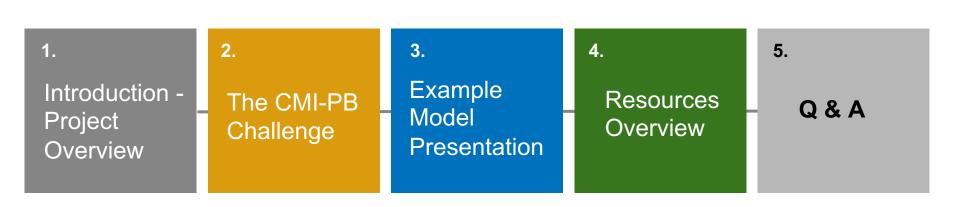
understanding of the topic at hand

15th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction

DeepMind has predicted the structure of almost every protein known to science

The Food and Drug Administration (FDA) and National Cancer Institute (NCI) call on the scientific community to develop and evaluate computational algorithms that can accurately detect and correct mislabeled samples using rich multi-omics datasets

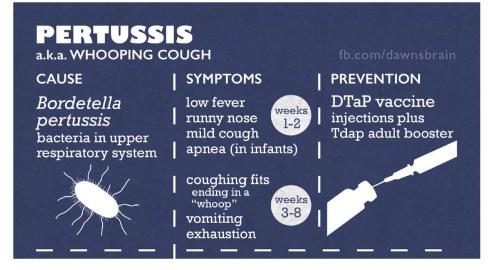
Obstacles in developing computational models for biological applications


- Systems vaccinology studies have:
 - Varying study designs
 - Multi-dimensional and heterogeneous data
 - Many parameters and few study participants
 - A lack of methods to test the generalizability and predictive performance of models objectively
- Accounting for <u>variability between individuals</u> is necessary to ensure the robustness and accuracy of computational models
- It is important to capture temporal dynamics in system vaccinology models

Our Approach:

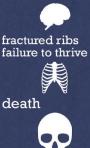
- To establish a community platform to develop and test computational models of immunity in vaccination
- To better understand vaccine-induced immunity to *B. pertussis*

Agenda for Today's Session



Presentation Agenda

1.	2.	3.	4.	5.
Introduction- Project Overview	The CMI-PB Challenge	Example Model Presentation	Resources Overview	Q & A



complications earache

pneumonia

encephalopathy seizures cerebral hypoxia

EPIDEMIOLOGY

spread via **coughing**, **sneezing**, and other close contact

3+ months

avg. length of infection

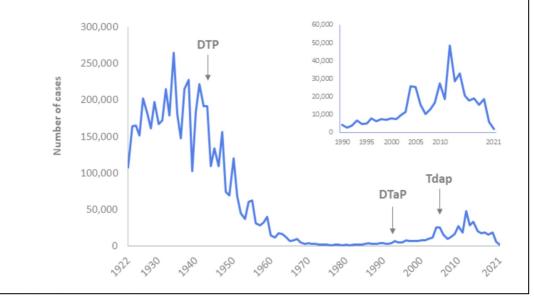
5.5

avg. number of people an infected person will infect while contagious $(\ensuremath{\mathbb{R}}_0)$

48,500,000

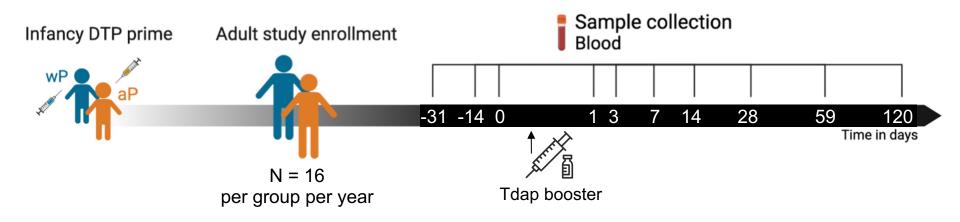
people infected annually worldwide

195,000


SOURCES: Centers for Disease Control, World Health Organization, PLOS Medicine, PubMed

Waning Immunity from aP pertussis vaccination

- 1940s: Introduction of an inactivated whole bacteria PT vaccine (wP) dramatically decreased cases
- 1995: Vaccine-related side effects led to a replacement with the <u>a</u>cellular <u>P</u>T vaccine (**aP**) in the USA
- aP induced protection wanes faster than wP → Why?


Reported NNDSS pertussis cases: 1922-2021

Source: National Notifiable Diseases Surveillance System, CDC

Recruitment Strategy

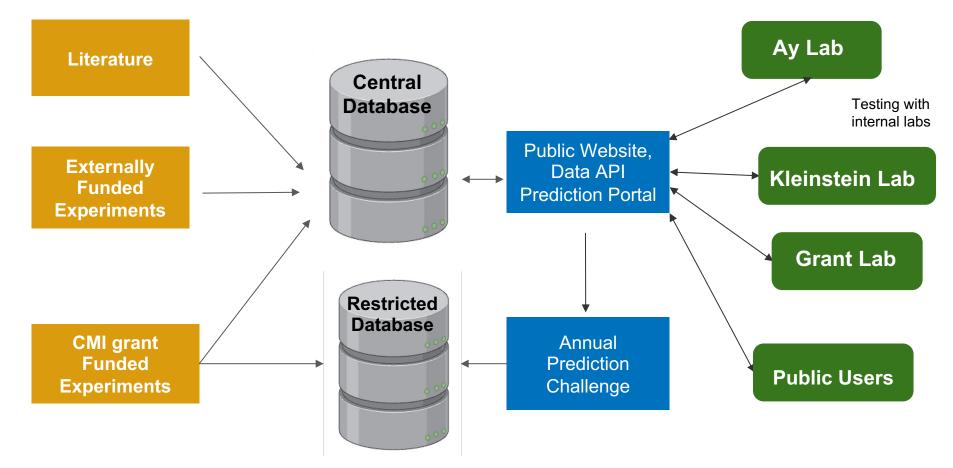
Characterizing immune responses - Multiomics approach

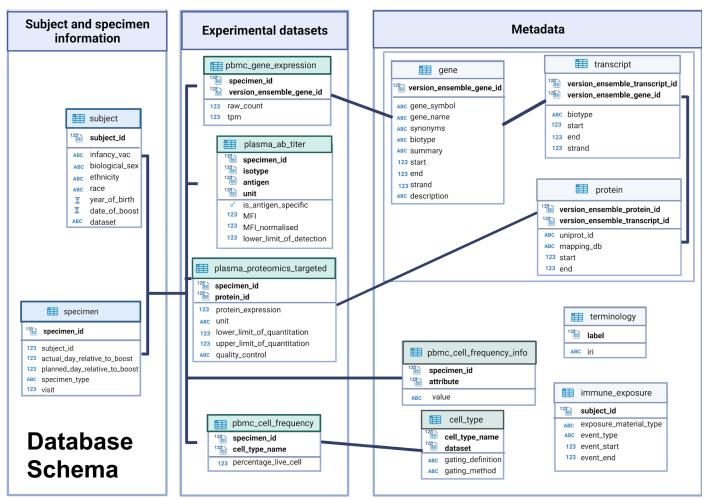
- **PBMC cell frequencies** by flow cytometry
 - Total of 37 distinct cell populations

Plasma antigen-specific antibody titers by Luminex

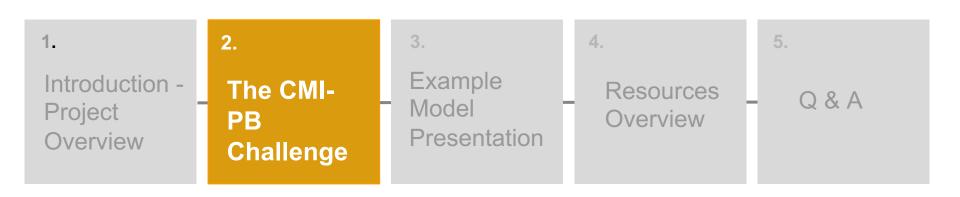
- Antibody Isotypes: IgG, IgG1, IgG2, IgG3, IgG4
- Vaccine Antigens
 - Pertussis Toxin (PT), PRN, FHA, FIM2/3
 - Tetanus Toxoids (TT)
 - Diphtheria Toxoids (DT)
 - OVA (irrelevant control)

Plasma proteomics by Olink


Concentration of 45 cytokines

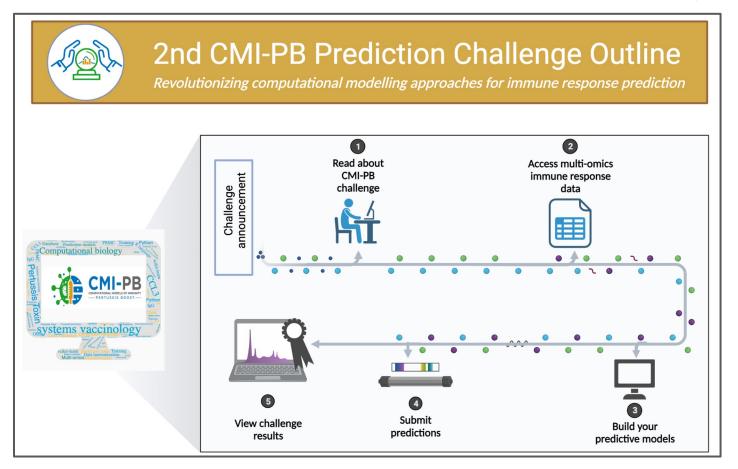

Transcriptomics by bulk RNA-Seq

d. Databases, Model building, and Prediction Challenge



e. Providing access to experimental data in a standardized format

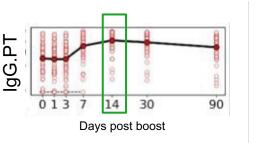
Presentation Agenda

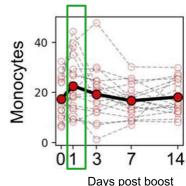


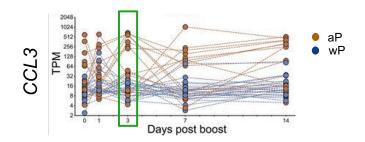
			Number	of subjects	
	Annual prediction challenge title	Contestants	Training dataset	Test dataset	Current status
1	First Challenge: Internal dry run	CMI-PB consortium	60 (28 aP + 32 wP)	36 (19 aP + 17 wP)	Concluded in May 2022
2	Second Challenge: Invited challenge	Invited contestants	96 (47 aP + 49 wP)	22 (13 aP + 9 wP)	Announced on September 12, 2023
3	Third Challenge: Open Challenge 1	Public	118 (60 aP + 58 wP)	32 (16 aP + 16 wP)	Will be announced in April 2024
4	Fourth Challenge: Open Challenge 2	Public	150 (76 aP + 74 wP)	32 (16 aP + 16 wP)*	Will be announced in December 2024

b. Prediction challenge outline

c. Formulating prediction tasks for CMI-PB Challenge




- Previously identified <u>vaccine responses</u> are formulated as prediction tasks*
- General vaccine responses:
 - <u>Plasma IgG levels</u> increased at <u>day 14 post-</u> <u>booster</u> vaccination compared to baseline
 - Increase in the percentage of <u>monocytes on</u> <u>day 1</u> post-booster than baseline
- aP/wP specific vaccine responses:
 - A subset of <u>aP-primed individuals</u> showed an increased expression of proinflammatory genes, including <u>CCL3 at day 3</u> post-booster vaccination


★ A system-view of *Bordetella pertussis* booster vaccine responses in adults primed with whole-cell versus acellular vaccine in infancy

Ricardo da Silva Antunes, ... , Alessandro Sette, Bjoern Peters

JCI Insight. 2021;6(7):e141023. https://doi.org/10.1172/jci.insight.141023.

c. Formulating prediction tasks for CMI-PB Challenge

List of tasks

1) Antibody titer tasks		
1.1) Rank the individuals by IgG antibody titers against pertussis toxin (PT) that we detect in plasma 14 days	\square	predicted values
post booster vaccinations.		
1.2) Rank the individuals by fold change of IgG antibody titers against pertussis toxin (PT) that we detect in		predicted fold-change
plasma 14 days post booster vaccinations compared to titer values at day 0.		values
 2) Cell frequencies tasks 2.1) Rank the individuals by predicted frequency of Monocytes on day 1 post boost after vaccination. 2.2) Rank the individuals by fold change of predicted frequency of Monocytes on day 1 post booster 		Exan
vaccination compared to cell frequency values at day 0.		Subject ID
3) Gene expression tasks		
3.1) Rank the individuals by predicted gene expression of CCL3 on day 3 post-booster vaccination.		101

3.2) Rank the individuals by fold change of predicted gene expression of CCL3 on day 3 post booster vaccination compared to gene expression values at day 0.

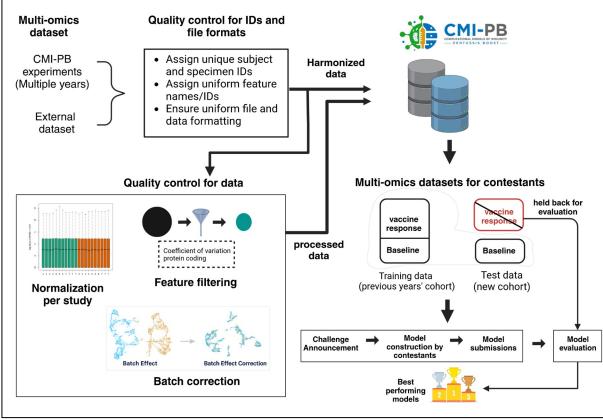
The ultimate goal is to model as many of the tasks as possible. However, contestants are not required to submit answers for all tasks.

mple of Rankings

Subject ID	Predicted value	Rank
101	2.9	4
102	9.1	1
103	1.2	5
104	4.5	3
105	4.7	2

Submission file preparation

	A	В	с	D	E	F	G	Н	I	J
1	Subject ID	Age Biologica	Sex at Birth	Vaccine Priming Status	1.1) IgG-PT-D14-titer-Rank	1.2) IgG-PT-D14-FC-Rank	2.1) Monocytes-D1-Rank	2.2) Monocytes-D1-FC-Rank	3.1) CCL3-D3-Rank	3.2) CCL3-D3-FC-Rank
2	97	35 Male		WP	14	(15	5 2	1 11	17
3	98	28 Female		wP	3	7	13	3 1	5 4	1
4	99	22 Female		aP	7	2	18	3 12	2 15	13
5	100	20 Female		aP	20	20	10	0 1:	1 9	6
6	101	18 Male		aP	19	Ę	1	L	B 1	19
7	102	18 Male		aP	5	21	. 11	1 1	7 2	9
8	103	27 Female		WP	21	4		1	7 10	12
9	104	32 Female		WP	15	12	14	4 10	6 7	14
10	105	27 Female		WP	9	15	17	7 1:	3 20	11
11	106	25 Female		aP	1	11		3 14	B 19	3
12	107	23 Female		aP	2	16	19	9 10	0 5	4
13	108	26 Female		WP	10	17	1	7	1 21	5
14	109	32 Female		WP	8	18	12	2 20	8 0	15
15	110	24 Female		aP	12	13	16	5 19	9 12	2
16	111	25 Male		WP	11	8	20	0	5 14	16
17	112	25 Male		aP	4	10	5	5	9 3	20
18	114	31 Male		WP	13	1	. 21	L 14	4 13	8
19	115	19 Female		aP	18	3	8	3	2 18	21
20	116	21 Male		aP	8	19	8	3	4 8	7
21	117	27 Female		aP	17	ç	Ş	9	B 17	18
22	118	23 Male		aP.	16	14	2	2	3 16	10

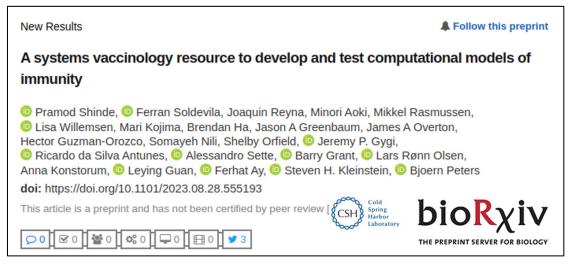

A complete submission

1	Subject ID	Age	Biological Sex at Birth	Vaccine Primind	1.1) IgG-PT-D14-tit	1.2) IgG-PT-D14-FC-Rank	2.1) Monocytes-D1-	2.2) Monocytes-D1-P 3	3.1) CCL3-D3	3.2) CCL3-D3-F0
2	97		Male	WP	14	/ 5			11	· ~
3	98	28	Female	WP	3				4	
4	99	22	Female	аP	7				15	
5	100	20	Female	aP	20				9	
6	101	18	Male	aP	19				1	
7	102	18	Male	aP	5				2	
8	103	27	Female	WP	21				10	
9	104	32	Female	WP	15				7	
10	105	27	Female	WP	9				20	
11	106	25	Female	3P	1				19	
12	107	23	Female	aP.	2				5	
13	108	26	Female	WP	10				21	
14	109	32	Female	WP	8				8	
15	110	24	Female	aP.	12				12	
16	111	25	Male	WP	11				14	
17	112	25	Male	aP.	4				3	
18	114	31	Male	WP	13				13	
19	115		Female	3P	18				18	
20	116		Male	3P	8				8	
21	117	27	Female	3P	17				17	
22	118	23	Male	aP	16				16	

A submission file with entries for two tasks

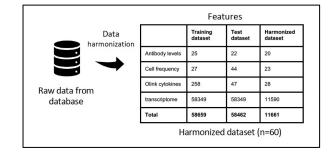
d. Overview of the CMI-PB Challenge data

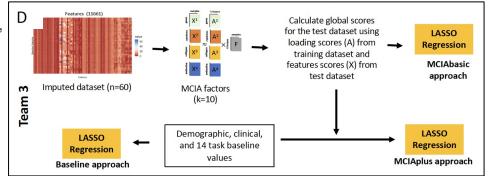
Challenge related information and Data access is provided via the CMI-PB website



Presentation Agenda

a. Models from First (internal) challenge

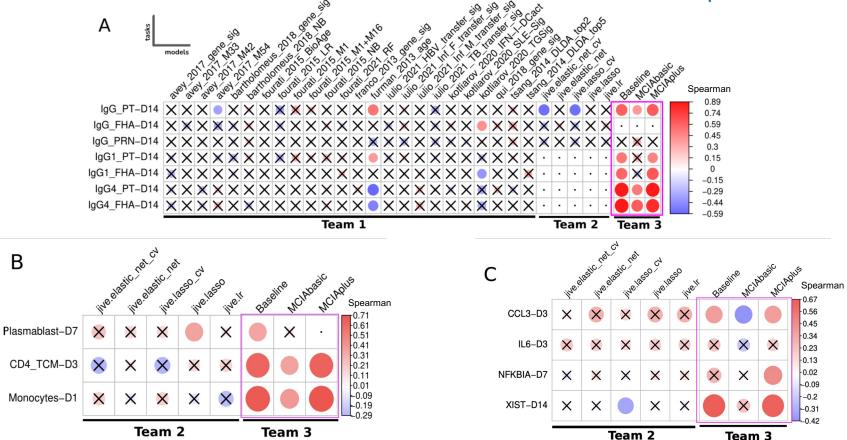


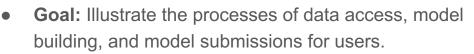


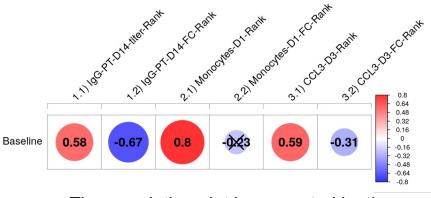
- **32 models** were developed during the first challenge by three teams
- **Team 1:** Establishing baseline prediction models from the systems vaccinology literature
- **Team 2:** Establishing purpose-built models using Joint and Individual Variation Explained (JIVE)
- **Team 3:** Establishing purpose-built models using Multiple Co-Inertia Analysis (MCIA)

a. Establishing models using the MCIA approach (First challenge)

- **Step 1:** Data imputation is key step in building MCIA models
 - Creation of harmonized dataset
 - Imputation of missing data in the baseline training set using Multiple Imputation by Chained Equations (MICE) algorithm
- Step 2: Build three models using MCIA approaches:
 - Baseline approach Clinical features (age, infancy vaccination, biological sex) and baseline task values
 - **MCIAbasic approach** Only MCIA factors
 - MCIAplus approach Features from first two models

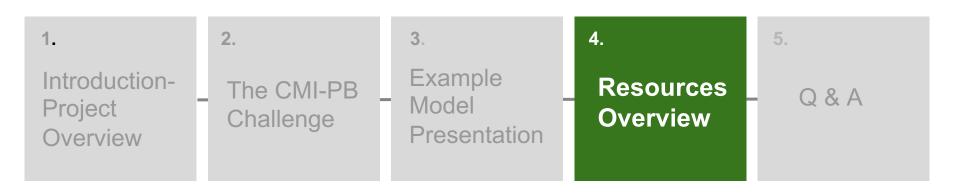



Evaluation of the MCIA models for the first CMI-PB challenge

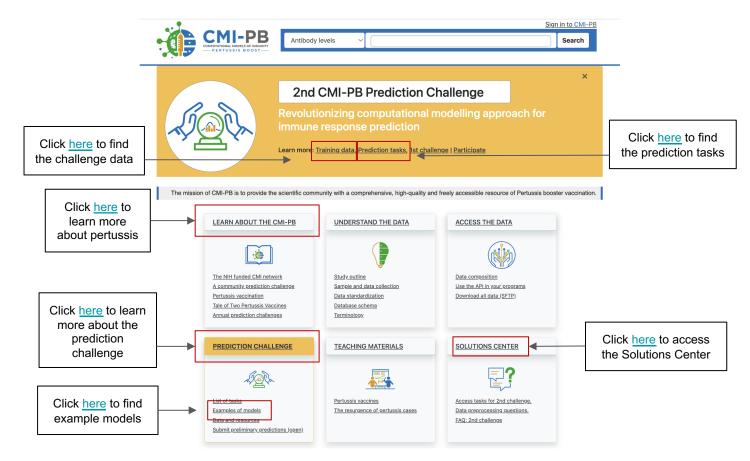

Note: The first challenge consisted of 14 tasks: 7 Ab titer, 3 cell frequency and 4 gene expression tasks.

b. Establishing baseline response of task variables to predict post-vaccination response

- Datasets used:
 - Training dataset (2020 + 2021)
- We calculated the Spearman correlation using the baseline and response values of the task variable.
 - For instance, we used the values of CCL3 from Day 0 to predict the response on Day 3.


Corr(CCL3_D0, CCL3_D3)

The correlation plot is generated by the training dataset.



Presentation Agenda

4. Summary of other resources on the site

CMI-PB Solutions center

CMI-PB SOLUTIO	NS CENTER		Sign U	p 💄 Lo	g In Q
Topics	all categories				0
Categories	Topic		Replies	Views	Activity
Invited Participants Challe	Explainable Machine Learning - Su-In Lee Internal Challenge III internal-challenge	0	0	39	24d
 Tags internal-challenge 	1st Challenge Prediction tasks Internal Challenge III internal-challenge	٠	0	214	27d
website other-discussions	XIST - SPEAR predictions plot colored by biological_sex Internal Challenge internal-challenge	٢	0	27	27d
invited-challenge	CMI-PB Tutorial Testing Internal Challenge internal-challenge	0	0	37	27d
	Cell counts Internal Challenge II internal-challenge	0	0	27	27d
	UPDATE: 2021 Longitudinal data is released	How is the Limit of		•	.OD) e

- Platform for knowledge sharing and discussion
- An account is required to post or respond to threads

How is the Limit of Detection (LOD) estimated for OLINK data and how is this handled in the data analysis?

Discussions Data organization internal-challenge

Pramod (1)

2 Nay '21

May 2021

May 2021

Limit of detection (LOD) is calculated separately for each Olink assay and sample plate. The LOD is based on the background, estimated from negative controls included on every plate, plus three standard deviations. The standard deviation is assay specific and estimated during product validation for every panel.

Consider excluding assays with low detection from analysis

Olink recommends that assays with a large proportion of samples below LOD is excluded from the analysis. The limit for exclusion should be decided on a study basis and consider design including sample size and experimental variables. Suitable exclusion limits may be in the range of less than 25-50% of samples above LOD.

https://discuss.cmi-pb.org/

CMI-PB API documentation

API Access III internal-challenge

Papers and Reading Materials

■ Internal Challenge III internal-challenge

RNA Seg and CyTOF data files

Internal Challenge internal-challenge

Creating an account

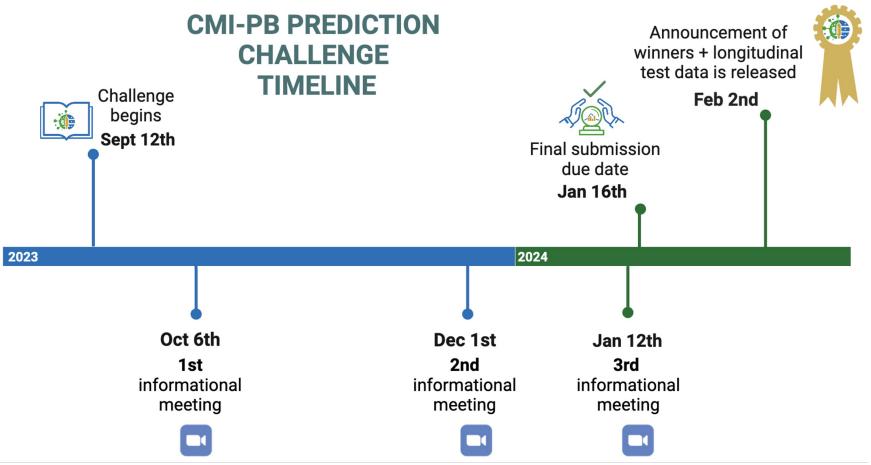
	CMI-PB Ab titer	~	Sign in to CMI-PB		CMI-PB SOLUTIONS CENTER	
The miss	OMPUTATIONAL MODEL OF IMMUNIT — PERTUSSIS BOOST —	unity with a comprehensive, high-quality and i	reely accessible resource of Pertussis booster vaccination.		Welcome to CMI-PB SOLUTION An account is required. Please create an account of	
	LEARN ABOUT THE PROJECT	UNDERSTAND THE DATA	ACCESS THE DATA		Sign Up 💄 Log In	
			(NI)		Step #2: Click "Sign Up" to cre	eate a new account
	The NIH funded CMI network What is pertussis vaccination?	How do we measure immune responses?	Data statistics Use the API in your programs		П	
Step #:	1: Click "Sign in t	o CMI-PB" in the	upper right hand cor	ner		
					Welcome! 👏	×
					Let's create your account	
			cmi-pb-contest@lji.org Submit predictic	an Quit	Never shown to the public.	
-	CMI-PB COMPUTATIONAL MODELS OF IMMUNITY	r v	T	Search	Username	
	— PERTUSSIS BOOST —			/	unique, no spaces, short	G with Google
The missic	on of CMI-PB is to provide the scientific con	mmunity with a comprehensive, high-qual	ity and freely accessible resource of Pertussis booster	vaccination.	Name your full name (optional)	
	LEARN ABOUT THE PROJECT	UNDERSTAND THE DATA	ACCESS THE DATA		Password	
					at least 10 characters	
			(เช่นไหก)		Create your account Log In	
Step #4		nen you are signe upper right hand	d in, your email is sho corner	own	By registering, you agree to the privacy policy and terms of service .	
	in the		comer		Step #3: Fill out registration fo	<u>rm</u> or use <u>SSO with</u>
					<u>Google</u>	

СМІ-РВ НОМЕ РАСЕ

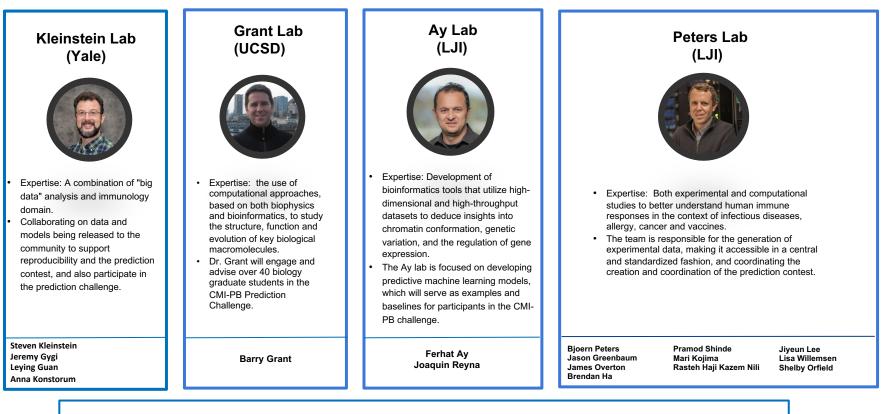
Creating a submission

	challenge Submission	Currently, we have If you have any issues, use our solutions center to post your questions.
	Table of contents • Prepare submission file • Make preliminary submission • Access past submissions	Step 1: Prepare Submission File Create a model and complete your analysis. We only accept submissions in the given Tab-separated values (I format: 1. Download the <u>submission template</u> 2. Submit your prediction in the prescribed format.
The mission of CMI-PB is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of Pertussis booster vaccination.	\Rightarrow	Step 2: Make Preliminary Submission • We've begun accepting preliminary submissions for testing. Kindly note that these submissions will no
LEARN ABOUT THE PROJECT UNDERSTAND THE DATA ACCESS THE DATA		assessed. The official window for final submissions will open on Dec 1, 2023. • Your submission should be a TSV file with 22 rows including a header and 10 columns. • Sample submission files are available <u>here</u> .
Stop #1: Open logged in click "Submit		Select a submission file: Choose File No file chosen

2nd CMI-PB Prediction


Step #1: Once logged in, click "Submit **Prediction**" in the upper right hand corner TSV) file

Welcome to the 2nd CMI-PB Prediction challenge. Please follow the steps below to submit your prediction challege.


Step #2: Follow all steps, click the "Choose File" button, and make your submission

The CMI-PB team

And thank you to the Sette Lab, Crotty lab, LJI Clinical Core, LJI Bioinformatics Core

The CMI-PB team members

Bjoern Peters

Steven Kleinstein

Ferhat Ay

Barry Grant

Alessandro Sette

Pramod Shinde

Shelby Orfield

Lisa Willemsen

Leying Guan

Joaquin Reyna

Rasteh Nili

Jason Greenbaum

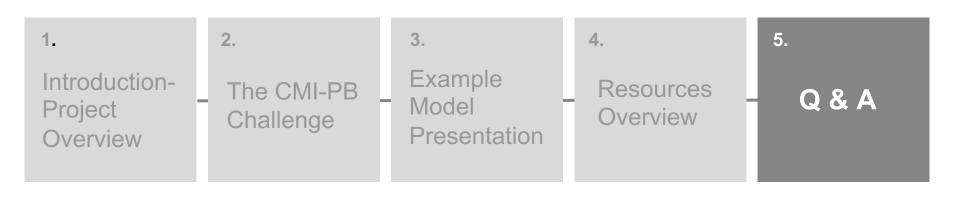
Brendan Ha

Jiyeun Lee

Ricardo De Silva Antunes

Jeremy Gygi

Anna Konstorum



Presentation Agenda

Questions?

Please email <u>cmi-pb-challenge@lji.org</u> at any time throughout the challenge for any questions.

We are excited to see you again for:

CMI-PB Prediction Challenge

2nd Informational Session

Dec 1st, 2023

La Jolla Institute for Immunology